Uniqueness of motion by mean curvature perturbed by stochastic noise Unicité du mouvement par courbure moyenne perturbé par un bruit stochastique

نویسنده

  • P. E. Souganidis
چکیده

We present some uniqueness (non-fattening) results for the motion by mean curvature perturbed by stochastic noise. It is well known that for special initial data, the deterministic motion has multiple solutions, i.e., it develops interior. Our result for a particular evolution of curves in R2 illustrates that stochastic perturbations can select a unique solution in a natural way. The noise we use is white in time and constant in space. The results are formulated both almost surely and in probability law.  2003 Elsevier SAS. All rights reserved. Résumé Nous présentons des résultats d’unicité pour le mouvement par courbure moyenne, perturbé par un bruit stochastique. Il est bien connu que pour certaines conditions initiales, le mouvement a plusieurs solutions, i.e. il acquiert un intérieur. Notre résultat pour l’évolution de courbes spécifiques dans R2 illustre le fait que les perturbations stochastiques peuvent sélectionner une unique solution de manière naturelle. Le bruit utilisé ici est blanc dans le temps et constant dans l’espace. Nous donnons nos résultats en termes presque sũrs ainsi qu’en loi de probabilité.  2003 Elsevier SAS. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the short time asymptotic of the stochastic Allen-Cahn equation

A description of the short time behavior of solutions of the Allen-Cahn equation with a smoothened additive noise is presented. The key result is that in the sharp interface limit solutions move according to motion by mean curvature with an additional stochastic forcing. This extends a similar result of Funaki [9] in spatial dimension n = 2 to arbitrary dimensions. Resumé On étudie le comportem...

متن کامل

Stochastic Integration with respect to Gaussian Processes

We construct a Stratonovitch-Skorohod-like stochastic integral for general Gaussian processes. We study its sample-paths regularity and one of its numerical approximating schemes. We also analyze the way it is transformed by an absolutely continuous change of probability and we give an Itô formula. c 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Intégrale stochasti...

متن کامل

Geometric Mean Curvature Lines on Surfaces Immersed in R Ronaldo Garcia and Jorge Sotomayor

Here are studied pairs of transversal foliations with singularities, defined on the Elliptic region (where the Gaussian curvature K is positive) of an oriented surface immersed in R. The leaves of the foliations are the lines of geometric mean curvature, along which the normal curvature is given by √ K, which is the geometric mean curvature of the principal curvatures k1, k2 of the immersion. T...

متن کامل

The volume preserving crystalline mean curvature flow of convex sets in R

We prove the existence of a volume preserving crystalline mean curvature flat flow starting from a compact convex set C ⊂ R and its convergence, modulo a time-dependent translation, to a Wulff shape with the corresponding volume. We also prove that if C satisfies an interior ball condition (the ball being the Wulff shape), then the evolving convex set satisfies a similar condition for some time...

متن کامل

Stochastic calculus with respect to fractional Brownian motion

— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004